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This paper is concerned with the determination, on the basis of Oseen’s equations, 
of the flow past a quarter-plane with its leading edge normal to, and its side edge 
parallel to, auniformincident stream. Thesolution is completed, exceptforaregion 
in the vicinity of the corner, correct to order V* for small kinematic viscosity v. 

Away from the vicinity of the side edge the flow will approximate to the two- 
dimensional flow past a semi-infinite plate. This two-dimensional flow can be 
built up successively, if we like to  think in terms of boundary conditions at the 
plate rather than at the edge of the boundary layer, from the potential flow 
associated with the uniform stream, a shear layer introduced to remove the 
tangential slip and a potential flow to remove the normal velocity at the plate 
associated with the shear layer. In  the vicinity of the plate the three together 
give the usual boundary-layer solution. 

We start our solution from this same basis, namely, the potential flow asso- 
ciated with the uniform stream and the shear layer to restore the no-slip condi- 
tion. As a first approximation, neglecting the effects of the edges, this will be the 
same as for the two-dimensional problem. The normal velocity introduced by 
this shear layer has to be compensated by a potential flow (see Q 4).  This potential 
flow in turn (and here our problem diverges significantly from the two-dimen- 
sional problem) introduces tangential velocities with components parallel to 
both leading and side edges which require the introduction of a further shear 
layer. Over the main body of the plate this secondary shear layer is of a con- 
ventional form ($5) but requires special examination near the edges. In  $ 6  it is 
shown how Carrier & Lewis’s (1949) solution can be modified to give the flow near 
the leading edge away from the tip and in $ 7, the core of the paper, the flow near 
the side edge is determined. 

In  the vicinity of the side edge the extra potential flow has no component in the 
direction of that edge and so the solution given by Howarth (1950) for the 
corresponding unsteady problem is applicable. What emerges from the present 
calculations, however, is that Howarth’s application of Rayleigh’s analogy to 
give the excess skin friction is seriously incomplete. For, whilst this argument 
gives correctly the local increase of order v in skin friction in the immediate 
vicinity of the side edge, it omits the widespread effects of the secondary shear 
layer. These are found to be of the same order in v as the local effects. 
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The cross-flow in the side edge region has features of special interest. I ts  
determination depends on a knowledge of the potential flow associated with the 
primary shear layer and so it depends, for instance, on the shape of the leading 
edge and is not, as appears to have been assumed up to now, determined com- 
pletely by local conditions. This is further exemplified by the fact that it  cannot 
be expressed in terms of what would be regarded as the natural boundary-layer 
variables but involves quite separately the distance from the leading edge. 

1. Introduction 
The Blasius solution for the flow past a semi-infinite flat plate has been shown 

to be capable of generalization to flat plates with curved leading edges provided 
that there are no discontinuities in the slopes of the leading edges. The flow in any 
plane parallel to the direction of the incident stream and containing a normal to 
the plate is then in fact the same as that given by the Blasius solution. 

This generalization breaks down when a discontinuity of slope occurs in the 
leading edge for then the solution would imply discontinuities in velocity 
derivatives, and an extreme case is provided by a quarter infinite plate with its 
leading edge normal to, and its side edge parallel to, the incident stream. Though 
little has been published about this problem the interest it has created has been 
rather more perhaps than the actual problem would at fist sight appear to 
warrant. This is because it raises problems of fundamental importance in the 
interplay between boundary layer and external flow and contributes to our 
knowledge of the role played by boundary-layer theory in obtaining solutions of 
the full equations of flow. One remark about the novelty of the problem is 
sufficient to convey the importance of it in boundary-layer theory. Calculations 
of the effect of the edge in increasing the skin frictional force on the plate are, as 
will be shown below for the Oseen equations, quite incomplete until one includes 
the effect of the boundary layer on the potential flow outside. 

Although the essential ideas underlying the solution are simple some of the 
details are complicated, and all the present paper sets out to do is to attempt, on 
the basis of Oseen’s linearization of the flow equations, to obtain as much as 
possible of the flow field correct to order d for small kinematic viscosity v. It is 
necessary to work to this order if the effect of the edge on the skin friction is to be 
estimated and it has been found possible to determine the whole of the field to this 
order apart from a small region near the corner. Of course with the Navier-Stokes 
equations as basis rather than the Oseen linearization of them the problem is more 
difficult, but the effects discussed here will have their counterpart there and that 
is the prime justification for the present paper. Some discussion of the differences 
to be expected with the exact equations is given at the end of the paper. 

2. The Blasius problem 
Some of the ideas for the present solution are contained in the two-dimensional 

problem of the flow past a semi-idnite plate, and as we shall require to make use 
of the solution of this problem anyway some discussion of it is a useful intro- 
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duction. The exact solution of the Oseen equations for this problem is known;* 
for small v it comprises a potential flow together with a conventional boundary 
layer. With U as the speed of the incident stream, the origin at the leading edge, 
the x-axis parallel to the incident stream and the y-axis normal to the plate, 
Oseen's equations may be split into the forms 

89 
ax p = -pU-,  v = grad$+v', 

v2q5 = 0, ( 2 . 2 )  

(2.3) 

divv' = 0, (2-4) 
where v = (u, w) is the velocity of flow. At infinity we must have u --f U ,  v -+ 0 
and at the plate u = v = 0. 

Looking a t  the solution from the boundary-layer point of view in the co- 
ordinates x, y, the first approximation for 9 is Ux. This would be a complete 
solution with v' = 0 except that the boundary condition u = 0 at the plate would 
be violated. We remove this difficulty by introducing a shear layer outside of 
which v' = (u;, v;) tends to zero and in which u; is determined by the approximate 
form 

of the first component of (2.3), and the condition u; = - U at the plate. This gives 

(2 .6)  

(2.7) 

(It is worth noting that (2.7) satisfies the shear layer form 

of the second component of (2.31.) 
Equation (2.7) gives a non-zero value for 

on the two sides of the plate, where suffix 0 refers to values at y = 0. This in 
turn means that the boundary condition v = 0 must be satisfied by writing 

where q51 is defined by V2#, = 0 and 
9 = UX4-91, (2.9) 

35% a 
- = -[v;10 = u(&~) sgny 
a Y  

on the two sides of the plate. 
* Carrier & Lewis (1949) were the first to obtain the skin friction and a formal solution 

of the flow field. Kaplun (1954) and others have shown that the solution takes on a 
relatively simple form in parabolic co-ordinates. 
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One might expect that the associated value (a#,/ax), would be O(v4) and 
different from zero; if this were so it would lead to the necessity for another shear 
layer type solution to remove it. In  fact (a#l/ax)o turns out to be zero and shear 
layer and potential flow are completely matched by the forms q5 = Ux + #1 and v'. 

Two further points are worth making. First of all the conventional boundary- 
layer solution is u = .us. + U ,  v = v; - [v;],, and so gives v = 0 a t  the plate and 
v 0 at infinity as expected. (The term - [v;], arises from a#l/ay since inside the 
shear layer V2#, = 0 is approximated to by a2q51/ay2 = 0 which in turn implies 
a#,/ay = (a#l/ay)o = - [v;],.) The velocities inside the boundary layer are then 
determined correct to O ( d )  except possibly in the vicinity of the leading edge. 
Secondly, in that vicinity nothing short of the full equations (2.2)-(2.4) is useful; 
the analysis of Carrier & Lewis (1949) solves the problem completely and 
shows that the skin friction determined by the boundary-layer approximation is 
in fact exact. 

3. The quarter-plate problem : general considerations 
With the origin at  the corner, the x-axis parallel to the stream, the z-axis along 

the leading edge and the y-axis perpendicular to the plate, Oseen's equations are 
equivalent to 

(3.1) 

VZ# = 0, (3.2) 

p = -pU--, a# v = grad#+v', ax 

divv' = 0. (3.4) 

For small v we shall now have small exceptional regions near both leading and side 
edges, but elsewhere on the plate we must expect a conventional type shear layer 

Thus we start as before by taking # = Ux and then removing the tangential 
in which a/ay % a / a X  and a/&. 

slip by a shear layer defined by 

w; = 0, (3.7) 

where v' = v; = (u;, vi, w;) and the boundary conditions are u; = - U at the 
plate and v; --f 0 at infinity. Equations (3.5) and (3.6) are precisely those 
(equations (2.4) and (2.5)) for the Blasius problem and the soIution is given in 
(2.6) and (2.7). We may note as before that with this solution the approximate 
form 
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of the second component of (3.3) is also satisfied. Again, as before, we have a 
velocity [410 at the plate given by (2.8) for z > 0. We shall refer to this as the 
primary shear layer. We therefore require to introduce a term $, where 

and 1 t 
(%J0 = u ( c X )  sgny for x > 0 , z  > 0 

(3.9) 
I = 0 elsewhere. 

Thus the first impact of the three-dimensional nature of the flow is felt at this 
stage. We now have a three-dimensional potential problem different from the 
corresponding two-dimensional one. Not least of these differences is, as we shall 
see below in $4, that (a$,/ax), and (a$,/az), are different from zero on the plate; 
both are O(v*). Hence to get u and w correct to order v* we have to introduce 
shear layers with velocity vi = (u;, v;, w;) such that 

and again we may note that this satisfies the approximate form 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

for the second component. 
Equation (3.13) gives a value of [v;Io different from zero and the next step for 

a complete solution would be to introduce a potential d2 to restore the boundary 
condition at the plate by putting (a$2/ay)o = -[vLl0 at  the plate. Inside the 
shear layer the appropriate form of V2$, = 0 is a2$b2/ay2 = 0 and so inside the layer 
we should simply have to add a velocity i3$z/ay = (a$b2/ay)o = - [v;l0. However, 
vh and rjb2 are both of order v and we need not determine them with our limited 
objective of obtaining the velocities correct to order v*. 

Thus equations (3.10) and (3.1 1) with their boundary conditions complete the 
solution correct to order v* except near the leading and side edges. We shall refer 
to the corresponding flow as the secondary shear layer. Outside the primary and 
secondary shear layers, as can be verified aposteriori from the detailed solutions in 
$$6 and 7, the error in the potential solution $ = Ux + $, arising from the neglect 
of these edge regions in the determination of is fortunately of higher order than 
vt. Hence we can limit further attention to the shear type flows near the edges. 
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It is convenient in dealing with Oseen's equations in the simplest way to work 
with the shear layers introduced above rather than the actual boundary layers. 
The latter can easily be obtained from the former. Thus the primary boundary 
layer is obtained from the primary shear layer by superposing a velocity U in the 
x-direction and -[v& in the y-direction. The secondary boundary layer is 
derived from the secondary shear layer by superposing velocities (a$,/ax), and 
(a$,/az), in the x- and z-directions and - [v& in the y-direction (though the latter 
is negligible to order v). Similarly, in the discussions below of the edge regions the 
shear layer results can be translated immediately into standard boundary-layer 
forms. 

One could say that the difference between the shear layer and boundary-layer 
approach lay in the difference between 'matching ' at the boundary and matching 
at the edge of the boundary layer. In  the Oseen equations to the order of 
accuracy of this paper the two approaches produce identical results. With the 
full (non-linear) boundary-layer equations standard practice is to match at  the 
edge of the boundary layer, but it is for consideration here too whether matching 
at  the boundary might be advantageous as suggested by Latta (1951) and 
Kaplun (1954) in another, though not unrelated, connexion. 

Turning now to the shear layer near the leading edge and away from the 
vicinity of the tip, we can therein no longer neglect a/ax in comparison with 
a/ay but we can still neglect a/& and this is true within the layer for the potential 
contribution to the flow inside it. Thus the equations determining this layer with 
$ = Ux+$,+$' are 

(3.15) 

(3.16) 

divv' = 0. (3.17) 

In  this region, however, w' = O(v*) and awl/& = O(v*), and the effect of this term 
in (3.16) would be to give contributions of higher order than O(v*) to u' and v', 
since the extent of the region in x and y is O(v*). Hence we may take (3.17) in the 

aul avi 
ax ay 

approximate form 

The boundary conditions are 

-+--0 .  (3.18) 

at the plate, and u', v', w' and grad q5' -+ 0 at infinity. The solution is considered 
in 86 below. 

Near the side edge and away from the vicinity of the tip we may neglect a/ax in 
comparison with a/ay but must now retain a/az. Thus inside the side edge shear 
layer the potential equation can be written 

(3.19) 
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where c$ = Ux + + qS and the equation for the shear layer velocity is 

(3 .20)  

In  this region, since au'/ax is O(l) ,  we have to retain the full equation of 
continuity aul avl awl 

ax ay ax 
-+-+--0. (3 .21)  

The boundary conditions are v1 + 0 and grad 4' -+ 0 a t  infinity, whilst a t  the 

We shall find it convenient, when we consider the solution in detail in $ 7  below, 
to introduce the two-dimensional harmonic @ conjugate to q5' so that we shall 
have 

(3 .22)  

and boundary conditions at the plate of the form 

4. The potential solution 
The potential problem posed by (3 .9 )  has the solution 

ax a2 
27r$r5,(x,y,z) = - (4 .1 )  

(x - X) ax a2 

(2 - 2) ax a2 

so that 

(4 .3)  

It follows that 

I z(x - X) ax +Irn 2n%= (!?)"(I a, (x-X)dX 
ax 0 x q ( x  - X)Z+ y2] 0 X & [ ( X - X ) 2  +y2] [(x - X)Z+y2+ 2214 

and 

where x = ylx, 6 = 212, 

and 
at W,(S) = - - 

2n Srn 0 t q ( t  - 1)2+Q21)' 
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(4.10) 
( t -  1)dt 

+ x2]  [(t - 1 ) 2  + 5”l” ) 

and 

while when 5 is small 

and 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Finally, we shall need W, when y + 0 but y2 + 9 < x2. It follows immediately from 
(4.6), (4.9), (4.11) and (4.15) that 

(4.16) 

If instead of considering the quarter infinite plane x > 0, y = 0, z > 0 we had 
supposed that the leading edge was a curve of arbitrary shape but that the side 
edge was unaltered, the flow v; determined from (3.6) would be different and 
so would the potential problem corresponding to (3.9). In  fact the logarithmic 
singularity in W, shown by (4.16) would be unchanged but it would be necessary 
to add to (4.16) a term c(x) xg, where c(x)  depends on the shape of the leading edge. 
A corresponding addition would be necessary for U,. In  particular if the plate is 
the semi-infinite strip y = 0, x > 0, R > z > 0 where R is large, then 

c(x) = - 

5. The secondary shear layer 

together with the boundary conditions 
The secondary shear layer problem 

1.854 

X’ 

is posed in equations (3.10), (3.11)) 

at y = 0, x > 0, z > 0, and 

uL=wh= 0 at x =  0, (y > 0 , z  > 0) .  

We solve the problem for the whole of the quarter-plane realizing that there will 
be errors near the leading and side edges. These regions will be dealt with in 
detail below. 
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We see that z appears in the equations and boundary conditions entirely as 
a parameter and we have essentially equations to solve in two independent 
variables. Introducing Laplace transforms with respect to x with parameter s2 
and using Gothic type to denote transforms we have 

so that u2 = U2e-(U/v) '~u,  2 -  - m 2 e + U / ~ P ~ ~ ,  (5.5) 

which give the solution in operational form. 
It will be sufficient for our purpose to comment on the asymptotic form of the 

results when 5 is either large or small. When 5 is large we find immediately that 

whilst when 6 is small 

where A(7)  and B(7) are functions of 7 only, with 

A(0)  = B(0) = 0) A'(0) = 4n4 B'(0) = -2nt. 

It will be szen that in the region on the plate where (5.6) is valid 

Therefore the contribution to the skin friction in the direction of the incident 
stream from the part of the plane defined by 

o < x < xl, z1 < z < z2, z1 9 x1 is ( ~ . ~ ~ O / ~ ~ ) I ~ L U [ X ~ ( Z ~ - Z ~ ) ] ~ .  

The corresponding sideways force is - (7.416/n2),uU[x1(z, - zl)]4. The former 
must be compared with the excess skin friction &,uUx1 for the rectangular strip 
0 < z < xl, 0 < z < co found by Howarth (1950) using Rayleigh's analogy and 
determined by considerations in the vicinity of the edge of a type to be discussed 
below. In  Howarth's time-variable problem of the flow engendered by a semi- 
infinite plane startedtomoveparallel toits (straight) side edge thevelocityisevery- 
where parallel to the side edge. Rayleigh's (1911) analogy as applied by Howarth 
to determine the flow past a quarter-plane leads to results which are seriously 
incomplete, since the values just quoted show that the contribution to the skin 
friction from the induced potential Aow via the secondary shear layer are at 
least as important as the contribution to the skin friction from the immediate 
neighbourhood of the side edge. In  fact the contribution from the induced 
potential flow tends to infinity with Iz2-z1). 
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6. The flow near the leading edge excluding the corner region 
Near the leading edge the flow is determined by the equations (3.15), (3.16), 

(3.18) ; again z appears only as a parameter. The solution is therefore of the type 
found by Carrier & Lewis (1949). Thus with parabolic co-ordinates c,, c,, where 

x+iy  = (c.,+i&)z, (6.1) 

we find that $' is negligible to order v) and that correct to this order 

The solution correct to order v* in the vicinity of the leading edge is therefore 

v = Ui+grad$,+v', 

where 
the incident stream. 

is given in 54, v' by (6.2)-(6.4), and i is a unit vector in the direction of 

7. The flow near the side edge, excluding the corner region 
The flow near the side edge is determined by equations (3.19)-(3.22). The first 

component of (3.20) can be solved independently of the others since, as can be 
justified a posteriori, a$'/ax is negligible to order v*. Furthermore, when 

.+ 0, a$,/aX -+ o 
for the quarter-plane whilst for a more general leading edge a$,/ax --t b(z), where 
b(z) is a function of x which can be determined. We shall for simplicity confine 
attention to the quarter-plane though the more general solution can be obtained 
if desired. Hence we have to solve 

aul a w  a w  u- = v  -+-- , ax ( a g  azp) 

subject to the condition u' = - U at the quarter-plane and u' --f 0 at infinity. 
This is the problem already solved by Howarth (1950) and has a, solution 

when z > 0, and 

when z < 0, where as before 
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and Ki(x)  is the Bessel function denoted in this way by Watson. The skin 
friction is given by 

This is, however, not the most convenient form for our present purpose. Let us 
write 

Y = y ( y ,  z = z(;)+, UI = UU, vt = ( v U ) h ,  

WI = (VU)*W, = vf, $ = vg, (7.4) 

and introduce the Laplace transforms with parameter s2 with respect to x. We 
shall denote by u, 0, m, f, g the transforms of U, V ,  W , f ,  g, respectively. Then since 

ab  am 
s%+- +- = 0. 

ay az 
We shall solve (7.5) subject to the conditions 

1 at Y = 0, 2 > 0, 
1 

S2 

- = 0  at Y = O , Z < O ,  

u = - - ~ - - s o ~ Z  

au 
ay 

(7.8) 

(7.9) 

where a > 0 and then we shall subsequently take the limit as a -+ 0 to obtain the 
solution of our problem. 

To this end put 

(7.10) u = -  x(w)exp(-isw~-s(w2+ 1))  do. 

Thisform*satisfies (7.5)and,inviewofthesecondconditionin(7.9), (w2+ l )gx(o)  
is regular in the upper half-plane Im(w) > k, for some k,. Hence if we use 
suffixes + and -to denote, respectively, functions regular in the upper and lower 

(7.11) 
half-planes we may put 

However, from the first condition of (7.9) 

1 " o  

27l I-m 

x ( w )  (w2+ 1 ) ~  = r + ( w ) .  

(7.12) 

* Since the variable x defined in (4.7) does not appear in the remainder of the analysis no 
confusion arises from the introduction of the function ~ ( w ) ,  with a different meaning, in 
(7.10) et seq. 
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Therefore 

1. (7.13) 

If we assume for the moment that T+ is regular for Im (u) > - a and x-(w)  is 
regular for Im ( w )  < 1, then the two sides of (7.13) are equal and regular in the 
strip 1 > Im ( w )  > -a. Hence they must be regular everywhere and therefore 
constant. In  view of the integrable singularity in the skin friction at Y = 2 = 0, 
this constant is zero. Hence 

i (w-i)&-(-ia-i)+ [ w+ia 
r + ( w )  + i( - icr. - i)i 

(w + i)i s2(w + ia) = x-(w)  (w - i)+ - - 

i( - ia - i)* 
sZ(w + ia) (w - i)+. x(0) = - (7.14) 

The proof is completed by noting that with this form T+ and x- are in fact 
regular in the regions in which they were originally assumed to be. Equa- 
tions (7.10) and (7.14) are equivalent to (7.2). 

Next, to deal with b and rn we shall write 

and - s(w2 + 1)+ V(w)  - iswW(w) + s"(w) = 0. (7.18) 

Equations (7.6)-(7.8) are thereby satisfied and subject to (7.18) V ( w )  and W(w)  
can be chosen for convenience in view of the presence of lj in (7.15) and (7.16). 

The boundary conditions on 0 and tt~ are 

on Y = 0, Z < 0. We may note that on Y = 0 , Z  > 0 

af 1 ay = i, 
l o g * z + y + ~ l o g ~ ] ,  s2v 

az ns 
whilst on Y = 0. 2 < 0 

- a y = o ,  a f - = 0 .  a2f ayaz 

(7.19) 

(7.20) 

(7.21) 

(7.22) 

(7.23) 

Furthermore since the pressure p is related to (ajax) (& + $'), we must have 
agla.2 and a2g/aZ2 both vanishing on Y = 0, Z < 0 so that we can take g = 0 
without loss there. Hence our boundary conditions become 

(7.24) 

(7.25) 
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on P = 0, Z > 0,  and 

on I’ = 0, Z < 0. We shall replace (7.34) by 

and ultimately let a + 0. 
i 

If now we choose V(w) = - 
s(w + ia) 

i (2 > 0) 

= o  (2 0) 

& S_mm ( - A) e-isoz dw = - - 1 e-asz 
so that 

S 

the boundary condition (7.27) then becomes 

a 
z(9+11) = 0 

for Y = 0, 2 > 0. 
Further, with the choice of V(w)  in (7.28) we have from (7.17) 

(w2+ I)* 
5 4 w  + ia) - sw(0 + ia) (0 - i)* ’ 

( - ia - i)* 
W ( 0 )  = 

13 

(7.26) 

(7.27) 

(7.28) 

(7.29) 

(7.30) 

(7.31) 

where we shall imagine the contour indented to pass above the origin in the 
w-plane. It follows that the contribution from W to am/a Y when Y = 0,Z < 0 is 
itself zero. Hence the boundary condition am/aY = 0 when Y = 0, 2 < 0 is 
equivalent to P$/a Y 2  = 0 and since a2fj/aZ2 vanishes this is equivalent to Ij = 0. 
Therefore the boundary conditions take on the simple form 

(i) on Y = 0, 2 < 0, g = Ij = 0; 

(ii) on Y = 0, 2 > 0, Q + Ij = 0 

(7.32) 

1 

2n Sm --a, w(w e-iswz + ia)s (w - i)* 
a 1 

ay 7TS 
and -(g+Q) =-[logsZ+CI+- 

(7.33) 
where C = y + 4 log s2v/4 U. An equivalent form is, in the limit a --f 0, 

((w2 + l)* - l} dw. 
,,(g+$) a 

(7.34) 
It is now convenient to assume that g satisfies the more general equation 

(7.35) 

where q > a > 0 and q will be made to tend to zero after a. This form then 
ensures that the appropriate functions are regular on the real axis and the 
principle of analytic continuation can then be applied. 
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To determine 9, Jj we show that a solution can be found by putting, in Y > 0, 

(7.36) o+(w) exp { - s[iwZ + (w2 + 4 2 ) )  Y]} dw, 

(7.37) 

where O+(w) is regular in the upper halfplane and we shall, as with (7.31), 
ultimately indent the contour to pass above the origin. The differential equations 
are thereby satisfied and so are the conditions on Y = 0,Z < 0, and the condition 
g + fJ = 0 on Y = 0,Z > 0. Hence we shall have a solution provided the remaining 
condition on Y = 0,Z > 0 is satisfied, that is, provided 

1 
O + ( w ) N ( w )  = - [ (w2+ 1))- 11 

w(w + ia) 
i 

7r(w + ia) -___ [C ' - log(a- i~) ]+T_(~) ,  (7.38) 

where N(w)  = (w2+ l)*-(w2+@)*, (7.39) 

and T-(w) is some function of w regular in the lower half-plane. 
It is shown in Appendix B that 

where N+(w) is determined in Appendix A, and 

7T s2v 

2 1 6 U  
D = -+*log----1. 

(7.40) 

(7.41) 

(7.42) 

The forms for g and fJ  in (7.36) and (7.37) are thus determined. The cross-flow 
velocities are then obtained from (7.15) and (7.16) by adding the potential flow 
contributions ag/aZ and - ag/a Y ,  respectively, interpreting and finally adding 
the flow associated with the original potential 

The most interesting results are those giving the skin friction on the quarter- 
plane itself and the velocity when y = 0, z < 0. We shall henceforward confine our 
attention to these aspects of the velocity field. 

obtained in 5 4. 

8. The skin friction near the side edge 
The component parallel to the main stream of the skin friction in the neigh- 

bourhood of x = 0 has already been determined by Howarth (equation (7.2) 
above); here we shall obtain its component parallel to the leading edge. We take 
a = 0, q = 0 and note that the potential flow q51 makes no contribution to the 
skin friction. The contribution from g to w, namely - ag/a Y, has to be added to 
(7.16) and hence the contributions to (awl3 Y),, from g and Jj amount to 

- ( a 2 P  Y2)  (4 + Q ) .  
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Since 0 satisfies Laplace's equation and 8 satisfies (7.17) and (0 + 8) vanishes on 
the plate (and therefore so does (a2/i3Z2) (0 +Q))  the contributions from 0 and €J 
amount to s2Q, simply. Hence 

where, as explained previously, the contour of integration is the real axis, 
indented at the origin into the upper half-plane. If 2 < 0 the integral vanishes. 
When 2 > 0, the contribution from the last two terms of (8.1) is 

Using (7.41) and (A. 12), the first term in (8.1) can be written as 

( 31 - J-, e-iswz [ -$ { 1 - N,o +-log 7r 
iw ( :)I 7roN+(o) no 

iD i 
-- -___ +-log -- dw 

l W  

(8.3) 
of which the last term integrates to 

7l 1 ( y + l o g g ) .  

Hence 

(8 .5 )  

In inverting (8.5) to get ( i3w/at~)~,~+ it is convenient to  note that' the inverse 
transformation of 

and of 

where 

Using these results it then follows that 

16Ux 271 
where 27rN-( - i t )  &(t, 6,x) = - log - - g( 9) - 2 + 7r - 7. (8.9) V 
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It is worth noting that this component of skin friction is of much more com- 
plicated form than that for the component parallel to the main stream. The 
complication arises principally from the presence of the term log (1 6 U+) in (8.9) 
and means, for example, that the cross-flow does not possess the similarity 
properties of the main stream component. 

In  particular, when 5 is large 

= -g(l-&&log&+;) 2 +o(_r)2], 1% 5 (8.10) El,=,+,, ,o 

in conformity with (5.8). 
When 5 is small 

9. Flow in the plane y = 0, x < 0 

be verified that when 5 is large 
I n  a similar way the velocity distribution in y = 0, x < 0 may be found. It can 

in conformity with (4.15), whilst near 6 = 0 we find 

10. Discussion 
In  the previous sections, expressions correct to order v4 when v is small have 

been obtained on the basis of Oseen’s equations for the velocity distribution at all 
points in the fluid except those near the corner of the plate. 

The O(1) effect arises, as might be expected from a Blasius-type boundary 
layer-the primary boundary layer-and produces a frictional stress of order v* in 
the direction of the incident stream. What emerges from our calculations is that 
the modification to this flow arising from the side edge is not confined to the 
vicinity of that edge. Continuity considerations demand an outflow from the 
primary boundary layer and the potential flow thereby engendered, which is 
O ( V ~ ) ,  gives rise to a secondary boundary layer in which there are velocity com- 
ponents parallel to each edge. These components give rise to stresses of order v 
parallel to each edge. 

The primary and secondary boundary layers together with the potential flow 
give velocities correct to order u* except for local regions near both edges. The 
flow near the leading edge can be obtained by the same method (and virtually the 
same analysis) as that employed by Carrier & Lewis (1949) for the two-dimen- 
sional problem and doesn’t call for any special comment here. 

In  the side-edge region the flow component in the direction of the main stream 
is determined by the same equations as Howarth solved for the time-variable 
flow engendered by a semi-infinite plane with a straight edge started to move 
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parallel to the edge. It gives rise to an additional stress of order v in the direction 
of the main stream. Hence, in addition to the primary stress, the stress in the 
direction of the main stream is made up of two quite separate components, the 
one a direct edge effect local to the edge, the other arising from the secondary 
boundary layer and significant over much of the plate. Both are of order v. 
Howarth's application of Rayleigh's argument to his time-variable problem as 
a means of obtaining information about the steady problem of the quarter-plane 
discussed in this paper is therefore incomplete. His argument gives quite correctly 
the local effect of the edge, but does not take into consideration the widespread 
effect arising from the secondary boundary layer. 

The cross-flow components in the side-edge zone have two features of interest. 
First of all they depend for their determination, through appropriate boundary 
conditions, on the potential flow originating from the primary boundary layer 
and in particular on its behaviour near the side edge. (The component of this 
potential flow in the direction of the main flow vanishes as the edge is approached 
and so does not influence the velocity component in the direction of the main 
flow in this zone.) An important consequence is that if the quarter infinite plate 
is replaced by another lamina also having y = z = 0 as a side edge but otherwise 
with a different perimeter, the cross-flow in the side-edge zone will also be 
different. Secondly, in this zone the component of the flow in the direction of the 
main flow is a function of 

only, but the cross-flow components u, w are such that xgu and xiw, in addition 
to depending on 7 and 6, depend also on log Ux/v and this fact considerably 
complicates the solution. 

Of course the use of Oseen's equations simplifies the problem very appreciably 
and it is interesting to speculate on the effects to be found with the Navier- 
Stokes equations. The non-linear character of these latter equations implies a 
much more complicated coupling between the various equations than is the 
case in our analysis. However, it is possible to draw certain conclusions. We shall, 
as here, have a primary boundary layer and the outflow from it will engender a 
potential flow which will be identical, apart from a numerical factor, with that in 
$4. This will give rise to a secondary boundary layer of a form similar to $5, 
except that now there is some coupling between the components in the u and 
w directions through the equation of continuity. The difference is most marked at 
small values of z/x. 

However, the greatest divergences from our analysis are to be expected in the 
side-edge zone. The coupling there is particularly strong, all three components 
being interdependent. Thus in particular the component in the direction of the 
main flow, which in the Oseen formulation was obtained independently of the 
cross-flow, can no longer be obtained without reference to the cross-flow and 
therefore to the potential flow. Since, as has already been pointed out, the 
potential flows for laminae having the same side edge but different leading edges 
differ in the vicinity of the side edge, the behaviour in the side-edge zone of the 
component in the direction ofthe main flow can be longer therefore be considered 

2 Fluid Meoh. 7 
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as a purely local effect. In  addition to its dependence on 7 and 6 a direct depen- 
dence on x is also to be expected. 

A consideration of the form of the solution near the side edge also shows that 
this region cannot be O(v4) in thickness. For if it  were, while the viscous terms 
would be O(l ) ,  the inertia terms of the Navier-Stokes equation would be 
O(1og v-l), since w is O(v4log v-l) near y = z = 0. In  the limit v -+ 0 the viscous 
terms would then be negligible in comparison with the inertia terms and so could 
not balance them as is required. It is hoped to consider this point in a later paper. 

Appendix A The determination of NJw) and N+(w) 
In  the strip -q < I m o  < q, 

N(w)  = (d+ 1))- (w2+q2)4  

is regular and non-vanishing. Hence using Cauchy's theorem we may write 
N(w)  = N+(w)/N-(w) where N+ and N- are regular in the upper and lower half- 
planes respectively and are given by (see, for example, Carrier & Di Prima (1956)) 

(A. 2 )  

where C consists of two lines C,, C2 parallel to the real axis lying in - q < Im 5 < q 
and enclosing w. Thus we may write 

" ( w )  N > ( w )  NL(w) 1 -==--=-- 

(A. 3) ___ = -_ 

taking C2 to be above C, and the integration to be in the direction Re f increasing 
since both sides are regular in Imw < q. Similarly 

The contour C2 may now be deformed into the two sides of the straight line 
joining f = iq  to f = i, whence 

(A* 5) 
tat ___ = -- 

W O )  

NL ( w )  
T i  s * (t + iw)  ( 1  - t2)* (t2 - q y  - 

The properties of N-(w) follow by integration on choosing N-(O) = 1, so that 

The behaviour of N . ( w )  near w = 0 if q is small but not zero can be obtained by 
N+(O) = 1-q. 

noting that from A. 5 

(A. 6) 
1 4  

= -7log-+O(q). 
1 at -- NL (0) --'I 

NJO) T i  (l-t2)6(t2-q2)) 7m q 
Hence we have for w small 

io 4 

" Q  
NJw) = l+-log- 

approximately, if 0 < w < q < 1, with a corresponding expression for N+(w). 
Next we shall need the behaviour of N-(w) in the limit q -+ 0. Then 
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w 
Hence 

Thus, when w is small 
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(A.  9 )  

logN-(w) =  soyl log( -;) dw 

= n2 :log( -$), 
so that (A. 10) 

when w is small. 
When w is large it is convenient to integrate A. 8 under the integral sign to give 

at 
1 log ( t  + iw)  -log t 

logN-(o) = +- :so (1-P)i  

NJw) = (2 iw) i  +- T- + O(w-8) (A. 12) 

The corresponding results for A?+(@) follow immediately from (A. 10) and 

7r (2r 2 0  
so that 

when w is large. 

(A. 1 2 ) .  

The determination of O+(w) Appendix B 

The purpose of this appendix is to apply the Wiener-Hopf technique to the 
determination of O+(w) in equation (7.38). 

We can write this equation, with the help of Appendix A, in the form 
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We notice at once that J1, 4, J5 are regular in the upper half-plane Imw > -a  
and J,, J3, J, are regular in the lower half-plane Im w < q. Moreover, J6 and J8 can 
be split into parts J6+ and J8+ regular in the upper half-plane and 4- and J8- 
regular in the lower half-plane. Hence, if we assume that O+(w) AT+(@) is regular 
in Im w > -a  and T ! ( w )  N ( w )  is regular in Im w < q we can rewrite (B. 1) in the 
form 

in which the two sides are regular in different overlapping halves of the w-plane. 
Hence, both must be regular everywhere and constant; we can complete the 
proof by noting that with these forms O+(w) N+(w) and T-(w) N-(o) are in fact 
regular in the regions in which they were assumed to be. From a consideration of 
the properties of O+(w)  when w is large it follows that the constant is zero. 

O+(W) N+(w) - J1- J4 - J5 - J6+ - Js+ = J2 + J3 + 4- + J7 + J8- + Js 

Hence we have 
@+(@) A!+(@) = J1+ J4 + J5 + J6+ + J8+* (B. 11)  

For w =/= 0, we can now conveniently take the limit a -+ 0 though we shall retain q 
as a small parameter. Then we have immediately 

J4 = w ( l o g $ + O ( q ) ] ,  2n-w 

Js = -7 iN-(o) (C' -log ( - iw) ) .  

(B. 12) 

(B. 13) 

(B. 14) 

To calculate J6+ and Js+ we must use the same techniques as in Appendix A. 

(B. 15) 
Thus, since 

J6 = -__ N-" [(d + q 2 ) i  -a ] ,  
w 

(B. 16) 

where C, is a contour starting at - 00, ending at + 00 and crossing the imaginary 
axis in the interval ( -iq, 0). This contour can be deformed into the sides of the 
negative imaginary axis from infinity to - iq where it is indented. 

N-(O)I+~ sin28dB 
Hence 

6 + -  7r 0 (q-iocos8) 
(B. 17) 

Thus 

when q < w .  

(B. 19) 
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and deforming the contour into the two sides of the negative axis indented at  
- iq we find that 

n J g +  = I1 + 12,  

Now in I, we can split the range of integration into (q, E ) ,  (E, 00) where q < E < 1. 
Then in the range (8,  00) 

The contribution to I2 from the remaining range is equal to 

in view of the restrictions on 6 .  

J8+ = Oklogq). (B. 21) 

The results of Appendix A together with equations (B. ll),  (B. 12), (B. 13), 
(B. 14), (B. 18) and (B. 21) then serve to determine O+(w). In  the limit a -+ 0, 
q -+ 0 equations (B. l l) ,  (B. 12), (B. 13), (B. 19) and (B. 21) then show that 

(B. 2 2 )  

where N+(w) is as determined in Appendix A with q = 0 and D = C' - 1 -log 2. 
As it stands the behaviour of (B. 22) near w = 0 is apparently a source of 

difficulty. However, this may be avoided by noting that since O,(w) is regular in 
the upper half-plane, Im  w > 0, the contours in (7.36), (7.37) and those dependent 
on themmay, as alreadyanticipated, be indented to  pass above the origin and the 
integrations performed in standard fashion. 
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